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sUhfhlARY
III tl]c pmblcrn of il]vcrti])g remote fmlsing IIlcmurcmcllts of rain, current rcprcscntation.s of tlic

raindrop size distribution (DSD) suffer crucially from the cxpcdicnt but unjustified and empirically
ill-fitting assumption t}]at the distribution has a known closed-form shape, w}lcthcr log-normal or l_’-
distributed. This paper proposes an approach to avoid such rmfoundcd a priori assumptions cntirc]y. ‘llc

resulting rcpr~scrltation of the rain is then used to derive “forward” formulas for rain remote-sensing
algorithms.
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1. INTRODUCTION

The approach currently widely used to establish radar-reflectivity +) rain-rate re-
lations from experimental data, and subsequently estimate rainfall from radar measure-
ments, is based on the physical relation between the rain rate R and drop size density
function and the radar reflectivity coefficient Z (see e.g. Marshall and Palmer, 1948,
and Ryde, 1946). Originally, a simple power law Z = aRb was assumed, and regressio:l
analyses of measured data consisting of simultaneous observations of rain intensities and

radar reflectivities were performed, resulting in a plethora of power-law Z–R relations
with large variations in the value of the coefficient a and the exponent b (see e.g. Battan,
1973). Other relations were calculated from disdrometer-mea.sured drop size histograms:
an analytic form for the drop size distribution waa postulated (log-normal or I’), then the
parameters of the distribution were calculated from the data, typically using notoriously
biased sample moments. The values of the resulting coefficients a and b still ranged over
wide intervals. More serious is the problem that the approach does not guarantee that
the parameters are mutually independent, or indeed that they are mutually independent
with R (in fact, quite the opposite is true), leading to very serious inconsistencies in
the algorithms that use such relations to retrieve rain. One “quick fix” solution would
be to eschew DSD-based relations altogether and use only regression-based power laws.
However, the problems with the regression relations are much more serious than those
with the current DSD approaches (see e.g. Haddad and Rosenfe]d, 1997): the integration
time required to obtain a sufficiently large set of simultaneous samples almost guarantees
that the sampled population will not be homogeneous, and the scatter about the mean
regression relation produces large uncertainties in the rain retrievals.

A second, equally serious, problem with DSD-based Z- R relations is that statistical

tests for goodness of fit have repeatedly failed to support the assumption that, the sampled
drops are consistent with a r- or lognorma] distribution. Never close enough to the data
when judged by the residual noise, the r and lognorlnal fits are especially bad when
large clrops occur, i.e. during convective events, and in cases wit]) peaks, convective or
stratiform. Recent experiments have shown evidence of drfq) breakup with peaks nww

0.7 mnl and 2.5 mm (KecIMn, 1997). This basic mismatch lwtwem] tht> assumpti(m alxmt
t]]f, ]) S]) s] Ialx: aIId the aclual data wil] produce radar-rail) rc]ations I]]at arc il]-suited
~() t]l(’ ty])(! of r<lill (’V(!II1Illld( ’1’SIII(]Y, a]ld tlI/LI Wil] Ill]aw)id; i])]y l)iiLS III(, riii]] (!stiln;i,tcs.
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2. SURFACE DATA

‘]’he approaclI w adq)ted to so]w t]lis probk?m is based on Karhunen’s tll(!orf!nl
for stochastic processes. ]ncleed, the main advantage of parametrizing the DSI) is (0 rc-
cluce the entire description of the rain (tit least of that aspect, of tile rain that affects
the racliometric ll~t~as~lrt?l))c:]lts)to the knowledge of two or (more typically) three values,
for example in the case of the r-distribution representaticm (Ulkwich, 1983) two shape
parameters if and A representing the normalised variance of the drop diameter (actually

equal to 1/(1~ +- 1)) and the mean drop size dividt!d by the normalised variance (equal to
I/A), ancl a quantity parameter (proportional to the total liquid mass). However, while
the parameters that one finds may give the best I’- or lognormal-distribution fit, the
discrepancy between this fit and the data is in almost every case still too large given the
number of sampled drops. An intuitively more direct and representative approach would
be to use as DSD variables the numbers of drops of all (sufficiently finely discretised)

sizes, spanning the entire spectrum of precipitating liquid drops. For example, one could
use as parameters IVl, . . . , N20 representing the “recalibrated” Joss-Waldvogel discreti-

sation, namely N1 = the number of drops (per cubic meter of air) with diameter between
Da–] and Di, and DO = O, D1 = 0.48 mm, Dz = 0.6 mm, D3 = 0.72 mm, D4 = 0.84 mm,

D5 = 0.96 mm, DG = 1.2 mm, D7 = 1.44 mm, Ds = 1.68 mm, Dg = 1.92 mm, DIO= 2.16
mm, DII = 2.52 mm, Dlz = 2.88 mm, Dls = 3.24 mm, D14 = 3.6 mm, D15 = 3.96 mm,
D16 = 4.44 mm, D17 = 4.92 mm, D18 = 5.4 mm, Dlg = 6.0 mm, D20 = CO. The problem
would then be that one would end up with 20 parameters Ni to be determined when
performing a retrieval, definitely too many variables. Grouping adjacent size bins into
single variables (each representing a correspondingly wider range of drop sizes) would be
counter-productive since it would drastically increase the error in the resulting radar-rain
relations (after all, the reflectivity depends on the 6th power of the drop diameter, so

if the error in the latter is tripled, say, by combining three adjacent size bins, the error
in the reflectivity gets multiplied at leasst 18-fold!). To avoid this problem, one would
need a more careful method to reduce the information in the size bins into two or three
variables. This can indeed be accomplished using the Karhunen-Lobve approach. In the
case at hand, one needs to calculate the covariances of the variables representing the
equivalent mass-per-volume-of-air of the drops in each “high-resolution” drop-size bin,

then diagonalise the covariance matrix: the eigenvectors corresponding to the three or
four largest eigenvalues would be the (three or four) linear combinations of the bin counts
which embody (most of) the description of the given DSD, since their eigenvalues are the
largest (recall that the eigenvalues are the covariances themselves, so the eigenvectors
corresponding to the largest eigenvalues are the variables that vary most, while the ones
corresponding to the smaller eigenwdues are the ones that remain relatively constant). An
important additional advantage is that the eigenvectors are automatically uncorrelated,
thus allowing one to assume correctly that they vary indepenclent]y (to first order).

W(! have performed the Karhunen-Lo&ve pri]lci]~al-cc) ll~I~o~~[~~~tanalysis on the Joss-
Waldvoge] clistrometer data collected at sea level nc!ar Darwin during two rainy seasons,
from hTovenlbcr 1988 to March 1990. in order not to giw! equal weight to all drops, it was
necessary to clmose a more physical w[!ightin~ which converts counts into mass and thus
gives as mucl] importance to a drop-size bin as the mass of liquid it represents il]clicates.
W(! also m!eded to make sur(! tl]at tl~e variables could not, {!ver IN!Imgativc. Tl)[!sc c(mc(!rns
IIaturally l(?ii(l10tll(’ d(!fillili(nl of Il(!w varial)k!s 1.,, = ~(4/3)7r(l~j/2)3Nj, which wc shall

IIS(, i]wt(,;id ()[ t II(! N:, 3S. Not(’ tl]iit tl)(’ ]Iorlll-sclll:tl’(!cl EJ l,: gives tl)(: totiil ]iqllid wat(:r
(x)]li(n)t,. ‘1’1)(’sallll)l{’ c(wari:illcr lIliltl’iX of tll(’ I.j ,‘%,(X)ll)l)lll(d Ilsi]lg (,11(,I)iil’Will (Iilt; l, (:;11)
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then be diagol]alisecl. TIN, new (uncorrelat{!d ) variables with the largest variances are

N; = 0.13L7 + 0.31L8 -1 0.45L9 + O.46L1O + 0..5LII + 0.36L12 + 0.2 Ed.13 (1)

N; = 0.111,3 + 0.131.4 + 0.22Ls + 0.44Lci + 0.54L7 -t 0.45L8 + 0.21LQ

– 0.2L11 – 0.25L1z – 0.2SL13 – 0.14L]4 (2)

N; = 0.1L3 + 0.131,4 + 0.22L5 -E 0.38LG + 0.23LT – 0.341,9 – 0.26L10 + 0.34L~Z

-+ 0.54L13 -t 0.33L14 + 0.1L15 (3)

These coefficients are quite remarkable. The first variable does indeed appear to charac-
terise the larger-drop DSD peak, being the weighted sum of the” contributions from those
drops whose diameter is about Dlo = 2.16 mm, while the second variable is most sensitive
to the smaller-diameter drops around DG = 1.2 mm. Those are remarkably close to the
two independently observed DSD peaks (Keenan, 1997). Table 1 lists the variances of all
twenty eigenvariables. Note that the variance of Nj is already 10 times smaller than that
of N{, confirming that most of the characterizing information about drop quantity and
distribution shape is indeed contained in the first three eigenvariables.

One may thus sitnplify the description of a particular DSD sample by retaining
only the corresponding values of (Nj, N;, N~, Nj) and considering that the values of the
higher-order N~’s are their respective means. This procedure is justified by the fact that
the variance of N~ (and therefore of N;, j a 5) is quite small. Figure 1 shows an exampk!
of an original sample, along with its reconstruction using mean values for the higher-
order N; ‘s. The truncation error is manifestly quite small. More generally, the effect of

the truncation error can be quantified using a X2 test, calculating for each sample th~!
statistic

20 (Lj – L;)2

~ L. (4)
j=l .?

where {Lj } are the observed contributions to the liquid mass in each size bin, and {L;}
are the contributions calculated from (N(, N;, N~, Nj ) and the means of the remaining
eigenvariables N;, . . c , N~O. Of the 6905 samples from Darwin, a quite respectable 3522
fall within the 95~” percentile of the distribution of (4). This contrasts quite favorably
with the results obtained when r or lognormal fits are made, in which case typically not
one sample passes the classic goodness-of-fit test.

3. AIRBORNE MEASUREMENTS

Unfortunately, the Darwin data exhibited flagrantly anomalous behavior for larger
rain rates R, namely a sudden jump in the correlation between the width of the DSD
and R, when R exceeded 12 nlm/hr. Since those data were collected using an instru-
ment which has been shown to be non-stationary, especially when exposed to higher
rain rates (Sheppard and Jo(!, 1994), we restricted the satnples used in the principal
component analysis above to those producing rain rates below 12 n~n~/hr. To confirm
that, the results are essentially still valid at higher rain ratt!s, it, was nec(!ssary to analyse

DSD l~~t:asllr(?]]~[?lltsfrom other tropical locations using diflkre]lt instrunxn)ts. We CIMX!
to anal yse lr~(!astlr(!ll](!llts madf! during t,]w 1ntcnsc Obs(!rvation ll!riod (d’ tlw TO(1 A
Coupk!d C)(:(:all-At~r~(JsJ)ll(:r(’ Ilespm)se Exp(!rimcnt (’J’OC;A/COAl{E). ‘J’])(!sc data were
cOIIOCM in tlw warm IXM)lof tlw western quatoria] ]’acific IM:(W(X:IINov(!]]ll)er, 1992,
al}d lk:lnwar.y, 1993 (1.ukiis (!t al, 1995), usil)g NC Ali’s 2-1) I)MS s])(!(:t,roll)(:t,(!r ])r~ll)(!s
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mountA!d 011 the NCA 1{ Ek!ct ra aircraft (Yuter et al, 1995). ‘Nw data were reduced us-
ing a method essentially similar to the one described in Bhwk and Hallett, 1986, then
re-samp]ed according to the Darwin distrometer size bins. To “verify” the decomposition
obtained from the Darwin data, we first amdysed only those TOG A/COARE samples
producing rain rates below 10 mm/hr. The first three eigenvariab]es were

N:’ = 0.13L4 + o.19L~ + o.43Lfj (5)

+ 0.52L7 + 0.46L8 + 0.33L9 + 0.29LI0 + 0.23LII + 0.15LIQ

N; = 0.37Ll + 0.34Lz + 0.4L3 + 0.351/4 + 0.351,5 + 0.33L(j (6)

– 0.13128 – 0.24J!Jg – 0.25L10 – 0.25LII – 0.14LIz

N; = 0.5LI -t- 0.32Lz + 0.28L3 – 0.33LIj – 0.27LT (7)

+ 0.2L9 + 0.33L10 + 0.38L11 + 0.28L12 + 0.12LH

These coefficients are remarkably similar to those obtained for the Darwin data. The first
two variables are concentrated near the same two drop-diameter peaks, and the third is
a three-humped window of roughly the same 8hape as in the Darwin case.

Encouraged by this comparison, we decided to use the entire TOGA/COARE data
set to derive expressions for ~~ which would be valid at all rain rates, for all types of

rain. Table 2 shows all the entries of the change-of-basis matrix expressing {N;} in terms

of {Lj }. The means and variances (eigenvalues) of the new (eigen)variables are given in
table 3. They are quite similar to those obtained with the Darwin data: the first variable
is again concentrated around the larger drop diameters, the second represents a difference

between smaller and larger drop contributions, and the third is a three-humped window
of the same shape as before. Finally, note that, because the matrix of change of basis is
orthogonal, we still have

x N~2 = the total liquid water content (8)

~

In particular, the variances in table 3 (and 1) are in units of grams per cubic meter.
Evidently, the first three eigenvariables embody most of the quantitative and qualitative
information about a DSD sample.

4. HORIZONTAL AND VERTICAL VARIABILITY

Because the PMS spectrometers were mounted on a platform flying at an approx-
imately constant speed, one can readily use the COARE data to estimate the spatial
variability of the DSD eigenvariab]es. One measure of variability is particularly useful in
our case: the absolute m.s. variation vd defined for a stationary random process N’(t)
simply as

‘1)~ == &{(N’(t,) – N’(t + 6))2} (9)

Tabk? 4 shows the values for V6 obtained from LIK!COARE data for the eigt!nvariables
N{, N;, N; and N~ ( tht! spatial auto-correlation of t h(! higher-order N“s are not shown
iJWaUSC th(lil’ StaIldard d(!viati{)n ~v(!l” ~ll(! f:?/~i?’Cdata iS a]r(?ad~ ne~]igihly Sllla]l, aS iS
(widcllt ill tabl(’ 3). ‘J’lIese variations can lx: dircctl,y comp:irecl to tlw r.m, s. variatiol) of
1])(}total ]iquir] Witt(!r ~ l>? = ~ N,~2illdUd(!d ill ta]~h: 4. ‘]’]I(!saIII])h: siz(! wtLs ilwuf[i(:i(!nt
(() (!iil(~]latt’ (mm!lati{~]ls I)cyo]ld A= 8 km with n)udl collfidelm:. ‘J’lIc results c(mfinll tlmt
tl)(’ slmtial variatiol) of N; f’or j >2 rm)lains quit,(! sIIIall ildwd.
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Fillal]y, tal)lr 5 shows t)h(?covariallc(?s betw(!cn t 1]{!valu~?s of th(! N; “s for tlw l)arwil]

sanl])les (again with R < 12 n]nl/hr). Tlw fact that, LIN?off-diagonal entries arc qui(e small
relative to tll(! ciiagomd variances implies that our principa] component rej)r(?st?lltatic)l I,
cleriw!d form the (X)A IW data sampled aloft, retains its first-ordt!r indep{?nrlenm for
ground DSD sampk?s.

5. RAD1OME’TRIC RELATIONS

Weathc?r radars can nle~sure the effective? reflectivity Ze of rainfall quitf? accurately

(see, e.g., Battan, 1973), At the higher frequencies typical of planned spaceborne de-
signs, the measured reflectivity is lower than the true Z, because of the attenuation ~~ k
accumulated along the propagation path ~, where k is the attenuation coefficient. The
problem of estimating the rain rate R given attenuated reflectivity measurements can be
expressed using Z-R and k-R relations. More recently, the specific polarisation propa-
gation differential phase shift @DP and the differential] reflectivity ZD~ have also been
suggested for their correlation with R and their relatively weak dependence on drop size.
Naturally, there are numerous Z-R, k--R, ZDR-R and @DP-R relations for any given
frequency (see, e.g., olsen, 1978), ultimately depending on the shape of the drop size
distribution (or at least, in the case of @DP, on the mean drop diameter), and on other
environmental factors. Since an inappropriate relation could lead to serious errors in
the retrieved rainfall (Haddad, 1995), it is particularly useful to have relations that are
explicitly parametrized by the DSD: one would then try to determine the appropriate pa-
rameters either from one’s data or from ancillary observations. A parametrization which
uses the principal component analysis above would be particularly useful (and unique)
because it would make no a priori assumption about the form of the DSD, and it would
allow one to assume constant however many DSD variables one must without commit-
ting any correlation-induced inconsistencies and while quantifying the r.m.s uncertainty
which the constancy assumption will have introduced.

To obtain DSD-based relations between Z. and R, we assigned to the vector (N;, Nj)
regularly-spaced discrete values within two standard deviations of the means of each of
the variables: in each case, we then used a Mie-scattering model to compute Z. exactly
as N{ (hence R) varied in the range [0.47 – 3 x 0.14, 0.47 + 3 x 0.14] (i.e. within three
standard deviations of the mean, see table 3), assuming that the temperature varied be-
tween 275 K and 290 K, and letting (N4, 0.0, N~O) vary within two standard deviations
of their respective means. The power law minimizing the sum of the mean-squared dis-
tances from the Mie-calculated reflectivities was then calculated for each pair (N;, N:).
The resulting Z.- R power-law relations

(lo)

for the Tropical Rainfall Measuring Mission’s 13.8 Ghz frequt?nc-y are given in table 6. To
illustrate the validity of (10), figure 2 shows the Mie and approximate Ze R curves, when
N; = 4.61 and N; = 0.78. Finally, table 7 gives the Rayleigh r(!lations, w]]ich apply for

t.yJ>ical ground-based radars. Note that the coc?fficit!nts CIOvary quite significantly wit]]

N;. On the oth(?r hand, given a distrmnt!t(;r m(!asurem(!nt, on{! can calculate t he valu(! of
N; that shou]d be used in rt?trieving R.

Relations for tlw microwave attenuation, difl(!r{!lltial rcfh!ctivity, til)d diff(:r(:ntiiil

])])as(’ (iii) IJ(! (j])tiiill(!d ill tlw san)e mallll(?r. W(? i]ltmld 10 Iw(b l])(!so r{!hiliolw (]ll(!a]]s
a])d vari:illc(!s) to derive a sto(:llasli(: filler lo (:st illlat)(~ tlw rail) ]]NXU)Sa]l(l r.!t). s. li]N:cr-
taillt,i(!s f’ro]n radar ]1](’:islll(!]]l(:llt,s.
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G. CONCLIJSIOIW

‘1’1)[:first conclusion one must draw from this application of tlw principal compom?nt
analysis to binned raindrop sizes is that ~hc!resulting description of drop size distributions
is quite robust, producing variables which are ess(?ntial]y mutually uncorre]ated even
when th(? correlations are calculated from DSD populations sampled at different, times,
in differc?nt locations and with different instruments.

Equally important, since the results obtained using a ground distrometer do not, dif-
fer significantly from those obtained using airborne probes, in spite of the vastly different
nl(?asurement uncertainties, one must conclude that the joint statistics of drop sizes do
not differ significantly in altitude and at the surface. ‘i’his is particularly useful in the
application of remote sensing to estimate precipitation, since it implies that precipitation
can be modeled using the same set of variables at all altitudes.

Moreover, most of these descriptor variables can be assumed constant spatially,
since a) the variances of all but the first four variables are indeed negligible, and b) the
horizontal autocorrelation estimated from the airborne measurements shows that the all
but the first couple of variables vary little spatially. This allows one to reduce the number
of unknowns in one’s model, without committing the classic inconsistency of assuming one
variable constant and another spatially-varying when the two are significantly correlated.

We are currently applying these results to various rain retrieval procedures, using

ground, airborne, and, soon, spaceborne radar measurements of rain.
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Figure captions

Figure 1: Sample ‘(before/after’” histogram illustrating thcgoodncas-of-fit of the “truncated” DSDrcprescnta-
tion (this sample is from the Darwin data, and the truncation assumed N:, . . . ,N{g constant, equal
tothcirobscrved means)

Figarc2: Sa~r]I~lcradar-raill rclatiollat 13.8GH~, w}lcll(~~, N~)=(4.~l, ~.7~)



.

t
o

o~
c+

oo
oo

o+
+

C
+
+
o
+
o
o
cc

O
C

O
O

I-
.N

O
O

C
O

oc
co

cO
l-w

tQ
-

11
4

w
N
-
O
m

K
J
c
o

O
-
l

I
-
I
-
+
.

N
C
J
T
U
O
U
3
C
C

w

cc
c&

l&
oc

‘
‘

‘1

d
~

00
0”

‘-=
w

%
im

si
L

oo
c
o
-



q

:J 5.62
~? -2.90
~? -2.88

f -0.45
:9 -0.58
# -0.73
~7 0.20

-0.66
~. 0.21
~) ~ -0.19
~1 -0.07

0.03
~ 0.06
~1 ~ -0.38
~1 -0.14

0.16
$: 0.09
~1 -0.07

a-a-t%m

tt

0.56 0.53 0.39
0.18 0.27 0.39
0.13 0.14 0.21

-0.04 -0.09 -0.15
0.31 0.38 0.07
0.24 0.20 0.04

-0.20 -0.21 -0.15
0.01 -0.03 -0.05

~
-0.45
0.13

-0.01
1.66

m
0.39

-0.27
-1.33
0.03
0.28

-0.39
0.37
0.11

-0.10
0.00
0.02

-0.15
-0.09
0.03

N: N;
-0.58 -0.73
0.48 -0.42
0.91 -0.01
0.04 1.01
0.39 -0.27
2.53 -0.05

-0.05 2.20
-0.88 -0.04
0.18 -0.12
0.03 0.05
0.11 -0.29
0.31 -0.07
0.04 0.01

-0.05 -0.02
0.03 0.06

-0.07 -0.09
-0.07 0.06
-0.09 0.05
-0.01 0.02

~
0.20

-1.15
-1.46
-1.54
TX3-
-0.88
-0.04
1.40

m
-0.88
0.03
0.02

-0.10
-0.02
-0.03
-0.06
mm
-0.03
0.00

~
-0.66
-0.35
0.17
0.55
0.03
0.18

-0.12
-0.12
TzT
-0.06
-0.01
-0.12
0.06
0.10
0.02

-0.07
TTEY
0.02
0.01

N;n N;,
0.21 -0.19
0.66 0.56
tl.67 0.53
0.46 0.39
0.28 -0.39
0.03 0.11
0.05 -0.29

-0.88 0.03
-0.06 -0.01
1.08 -0.01

-0.01 1.05
-0.52 0.01
0.01 0.02
0.09 -0.04,
0.01 -0.02
0.10 -0.10

-0.01 0.10
0.04 0.00

-0.01 0.00

~
w

0.18
0.27
0.39

mm
0.31
-0.07
0.02

m
-0.52
0.01
1.02

-0.03
-0.39
0.00

-0.02
mm
0.13
0.01

T?J
0.03
0.13
0.14
0.21
0.11
0.04
0.01

-0.10
m
0.01
0.02

-0.03
0.10
0.10
0.01

-0.01
TilF2-
0.01
0.00

~
0.06

-0.04
-0.09
-0.15
-0.10
-0.05
-0.02
-0.02
Tm-
0.09

-0.04
-0.39
0.10
0.83
0.01
0.01
0.04

-0.25
0.00

~
-0.38
0.31
0.38
0.07
0.00
0.03
0.06

-0.03
mm-
0.01

-0.02
0.00

-mm
0.01
0.34
-0.10
0.08
-0.01
-0.02

~
-0.)4
0.24
0.20
0.04

--(m
-0.07
-0.09
-0.06
m

0.10
-0.10
-0.02
-0.01
0.01

-0.10
0.42

m
0.02

-0.01

TABLE 5. Covariancc matrix for the Darwi]lcfata in tile new (COARE-derived) representation

[ N; N; = –8.7 N; = –5.5 I N; = -2.4 I N; = 0.78 I N; = 3.9 J

TABLE6. (u, b) pairs forthercflcctivity-rain relation Z=aRbat 13.8G1M

[ N; N; = –8.7 N; = -5.5 N; = –2.4 N; =. 78 I N; = 3.9 1

~
-mm
-0.20
-0.21
-0.15
m
-0.07
0.06
0.06

Tmr
-0.01
0.10
-0.08
0.02
0.04
0.08
-0.25
0.30
0.00
0.01

~
~
0.01

-0.03
-0.05
ZmT
-0.09
0.05

-0.03
mm
0.04
0.00
0.13
0.01
-0.25
-0.01
0.02
-mm-
0.49
0.01

~
-0.07
-0,08
0.05

-0.04
0.03

-0.01
0.02
0.00
0.01

-0.01
0.00
0.01
0.00
0.00

-0.02
-0.01
0.01
0.01
0.13

TABLE7. (a, b) pair sforttlcRaylcigl] reflectivity-rainrclatiml Z=URb
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